Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.057
Filtrar
1.
Commun Biol ; 7(1): 251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429335

RESUMO

Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.


Assuntos
Cromatina , Proteínas tau , Humanos , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Heterocromatina , Nucleossomos , 60422 , Fosforilação , Proteínas tau/química , Proteínas tau/metabolismo
2.
Nature ; 627(8004): 671-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448585

RESUMO

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Proteínas Nucleares , Nucleossomos , Proteômica , Humanos , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteômica/métodos
3.
Science ; 383(6688): 1215-1222, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484065

RESUMO

DNA replication is initiated at multiple loci to ensure timely duplication of eukaryotic genomes. Sister replication forks progress bidirectionally, and replication terminates when two convergent forks encounter one another. To investigate the coordination of replication forks, we developed a replication-associated in situ HiC method to capture chromatin interactions involving nascent DNA. We identify more than 2000 fountain-like structures of chromatin contacts in human and mouse genomes, indicative of coupling of DNA replication forks. Replication fork interaction not only occurs between sister forks but also involves forks from two distinct origins to predetermine replication termination. Termination-associated chromatin fountains are sensitive to replication stress and lead to coupled forks-associated genomic deletions in cancers. These findings reveal the spatial organization of DNA replication forks within the chromatin context.


Assuntos
Cromatina , Replicação do DNA , DNA , Genoma Humano , Animais , Humanos , Camundongos , Cromatina/química , DNA/química , DNA/genética , Conformação Proteica , Sequenciamento de Nucleotídeos em Larga Escala
4.
Nature ; 627(8005): 890-897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448592

RESUMO

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Assuntos
Cromatina , Replicação do DNA , Epistasia Genética , Histonas , Saccharomyces cerevisiae , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Epistasia Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
5.
Nature ; 627(8002): 196-203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355805

RESUMO

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.


Assuntos
Movimento Celular , Forma do Núcleo Celular , Neutrófilos , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Conformação de Ácido Nucleico , Diferenciação Celular/genética , Inflamação/genética , Elementos Facilitadores Genéticos , Linhagem da Célula/genética
6.
Nat Commun ; 15(1): 1274, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341433

RESUMO

Although emerging evidence indicates that alterations in proteins within nuclear compartments elicit changes in chromosomal architecture and differentiation, the underlying mechanisms are not well understood. Here we investigate the direct role of the abundant nuclear complex protein Matrin3 (Matr3) in chromatin architecture and development in the context of myogenesis. Using an acute targeted protein degradation platform (dTAG-Matr3), we reveal the dynamics of development-related chromatin reorganization. High-throughput chromosome conformation capture (Hi-C) experiments revealed substantial chromatin loop rearrangements soon after Matr3 depletion. Notably, YY1 binding was detected, accompanied by the emergence of novel YY1-mediated enhancer-promoter loops, which occurred concurrently with changes in histone modifications and chromatin-level binding patterns. Changes in chromatin occupancy by Matr3 also correlated with these alterations. Overall, our results suggest that Matr3 mediates differentiation through stabilizing chromatin accessibility and chromatin loop-domain interactions, and highlight a conserved and direct role for Matr3 in maintenance of chromosomal architecture.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Proteínas Associadas à Matriz Nuclear , Proteínas de Ligação a RNA , Núcleo Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromossomos , Regiões Promotoras Genéticas/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
7.
J Mol Biol ; 436(7): 168442, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211893

RESUMO

Since Strahl and Allis proposed the "language of covalent histone modifications", a host of experimental studies have shed light on the different facets of chromatin regulation by epigenetic mechanisms. Initially proposed as a concept for controlling gene transcription, the regulation of deposition and removal of histone post-translational modifications (PTMs), such as acetylation, methylation, and phosphorylation, have been implicated in many chromatin regulation pathways. However, large PTMs such as ubiquitylation challenge research on many levels due to their chemical complexity. In recent years, chemical tools have been developed to generate chromatin in defined ubiquitylation states in vitro. Chemical biology approaches are now used to link specific histone ubiquitylation marks with downstream chromatin regulation events on the molecular level. Here, we want to highlight how chemical biology approaches have empowered the mechanistic study of chromatin ubiquitylation in the context of gene regulation and DNA repair with attention to future challenges.


Assuntos
Cromatina , Histonas , Ubiquitinação , Cromatina/química , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Transcrição Gênica
8.
Nucleic Acids Res ; 52(5): e25, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38281134

RESUMO

Protein-specific Chromatin Conformation Capture (3C)-based technologies have become essential for identifying distal genomic interactions with critical roles in gene regulation. The standard techniques include Chromatin Interaction Analysis by Paired-End Tag (ChIA-PET), in situ Hi-C followed by chromatin immunoprecipitation (HiChIP) also known as PLAC-seq. To identify chromatin interactions from these data, a variety of computational methods have emerged. Although these state-of-art methods address many issues with loop calling, only few methods can fit different data types simultaneously, and the accuracy as well as the efficiency these approaches remains limited. Here we have generated a pipeline, MMCT-Loop, which ensures the accurate identification of strong loops as well as dynamic or weak loops through a mixed model. MMCT-Loop outperforms existing methods in accuracy, and the detected loops show higher activation functionality. To highlight the utility of MMCT-Loop, we applied it to conformational data derived from neural stem cell (NSCs) and uncovered several previously unidentified regulatory regions for key master regulators of stem cell identity. MMCT-Loop is an accurate and efficient loop caller for targeted conformation capture data, which supports raw data or pre-processed valid pairs as input, the output interactions are formatted and easily uploaded to a genome browser for visualization.


Assuntos
Cromatina , Técnicas Genéticas , Genômica , Cromatina/química , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Cromossomos , Genoma , Genômica/métodos
9.
Nucleic Acids Res ; 52(1): 101-113, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994785

RESUMO

Post-translational modifications (PTMs) of histones have fundamental effects on chromatin structure and function. While the impact of PTMs on the function of core histones are increasingly well understood, this is much less the case for modifications of linker histone H1, which is at least in part due to a lack of proper tools. In this work, we establish the assembly of intact chromatosomes containing site-specifically ubiquitylated and acetylated linker histone H1.2 variants obtained by a combination of chemical biology approaches. We then use these complexes in a tailored affinity enrichment mass spectrometry workflow to identify and comprehensively characterize chromatosome-specific cellular interactomes and the impact of site-specific linker histone modifications on a proteome-wide scale. We validate and benchmark our approach by western-blotting and by confirming the involvement of chromatin-bound H1.2 in the recruitment of proteins involved in DNA double-strand break repair using an in vitro ligation assay. We relate our data to previous work and in particular compare it to data on modification-specific interaction partners of free H1. Taken together, our data supports the role of chromatin-bound H1 as a regulatory protein with distinct functions beyond DNA compaction and constitutes an important resource for future investigations of histone epigenetic modifications.


Assuntos
Cromatina , Histonas , Espectrometria de Massas , Humanos , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/química , Reparo do DNA , Histonas/metabolismo , Nucleossomos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas/métodos
10.
Nature ; 624(7991): 366-377, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092913

RESUMO

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Assuntos
Encéfalo , Metilação de DNA , Epigenoma , Multiômica , Análise de Célula Única , Animais , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/metabolismo , Conjuntos de Dados como Assunto , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Nature ; 624(7991): 378-389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092917

RESUMO

Recent advances in single-cell technologies have led to the discovery of thousands of brain cell types; however, our understanding of the gene regulatory programs in these cell types is far from complete1-4. Here we report a comprehensive atlas of candidate cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing chromatin accessibility in 2.3 million individual brain cells from 117 anatomical dissections. The atlas includes approximately 1 million cCREs and their chromatin accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs to the most recent such annotation in the mouse genome. The mouse brain cCREs are moderately conserved in the human brain. The mouse-specific cCREs-specifically, those identified from a subset of cortical excitatory neurons-are strongly enriched for transposable elements, suggesting a potential role for transposable elements in the emergence of new regulatory programs and neuronal diversity. Finally, we infer the gene regulatory networks in over 260 subclasses of mouse brain cells and develop deep-learning models to predict the activities of gene regulatory elements in different brain cell types from the DNA sequence alone. Our results provide a resource for the analysis of cell-type-specific gene regulation programs in both mouse and human brains.


Assuntos
Encéfalo , Cromatina , Análise de Célula Única , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Córtex Cerebral/citologia , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Aprendizado Profundo , Elementos de DNA Transponíveis/genética , Redes Reguladoras de Genes/genética , Neurônios/metabolismo
12.
Nucleic Acids Res ; 51(20): 11080-11103, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823591

RESUMO

Chromatin association of the BRCA1-BARD1 heterodimer is critical to promote homologous recombination repair of DNA double-strand breaks (DSBs) in S/G2. How the BRCA1-BARD1 complex interacts with chromatin that contains both damage induced histone H2A ubiquitin and inhibitory H4K20 methylation is not fully understood. We characterised BRCA1-BARD1 binding and enzymatic activity to an array of mono- and di-nucleosome substrates using biochemical, structural and single molecule imaging approaches. We found that the BRCA1-BARD1 complex preferentially interacts and modifies di-nucleosomes over mono-nucleosomes, allowing integration of H2A Lys-15 ubiquitylation signals with other chromatin modifications and features. Using high speed- atomic force microscopy (HS-AFM) to monitor how the BRCA1-BARD1 complex recognises chromatin in real time, we saw a highly dynamic complex that bridges two nucleosomes and associates with the DNA linker region. Bridging is aided by multivalent cross-nucleosome interactions that enhance BRCA1-BARD1 E3 ubiquitin ligase catalytic activity. Multivalent interactions across nucleosomes explain how BRCA1-BARD1 can recognise chromatin that retains partial di-methylation at H4 Lys-20 (H4K20me2), a parental histone mark that blocks BRCA1-BARD1 interaction with nucleosomes, to promote its enzymatic and DNA repair activities.


Assuntos
Proteína BRCA1 , Cromatina , Nucleossomos , Ubiquitina-Proteína Ligases , Humanos , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Cromatina/química , Cromatina/metabolismo , Células HeLa , Histonas/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
13.
J Mol Biol ; 435(23): 168308, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37805066

RESUMO

Pioneer factors, which can directly bind to nucleosomes, have been considered to change chromatin conformations. However, the binding impact on the nucleosome is little known. Here, we show how the pioneer factor GATA3 binds to nucleosomal DNA and affects the conformation and dynamics of nucleosomes by using a combination of SAXS, molecular modeling, and molecular dynamics simulations. Our structural models, consistent with the SAXS data, indicate that only one of the two DNA binding domains, N- and C-fingers, of GATA3 binds to an end of the DNA in solution. Our MD simulations further showed that the other unbound end of the DNA increases the fluctuation and enhances the DNA dissociation from the histone core when the N-finger binds to a DNA end, a site near the entry or exit of the nucleosome. However, this was not true for the binding of the C-finger that binds to a location about 15 base pairs distant from the DNA end. In this case, DNA dissociation occurred on the bound end. Taken together, we suggest that the N-finger and C-finger bindings of GATA3 commonly enhance DNA dissociation at one of the two DNA ends (the bound end for the C-finger binding and the unbound end for the N-finger binding), leading to triggering a conformational change in the chromatin.


Assuntos
Fator de Transcrição GATA3 , Nucleossomos , Cromatina/química , DNA/química , Simulação de Dinâmica Molecular , Nucleossomos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Ligação Proteica , Fator de Transcrição GATA3/química , Domínios Proteicos
14.
J Mol Biol ; 435(20): 168263, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678705

RESUMO

Chromatin in the nucleus undergoes mechanical stresses from different sources during the various stages of cell life. Here a trinucleosome array is used as the minimal model to study the mechanical response to applied stress at the molecular level. By using large-scale, all-atom steered-molecular dynamics simulations, we show that the largest part of mechanical stress in compression is accommodated by the DNA linkers joining pairs of nucleosomes, which store the elastic energy accumulated by the applied force. Different mechanical instabilities (Euler bending, Brazier kinking, twist-bending) can deform the DNA canonical structure, as a function of the increasing force load. An important role of the histone tails in assisting the DNA deformation is highlighted. The overall response of the smallest chromatin fragment to compressive stress leaves the nucleosome assembly with a substantial plastic deformation and localised defects, which can have a potential impact on DNA transcription, downstream signaling pathways, the regulation of gene expression, and DNA repair.


Assuntos
Cromatina , Nucleossomos , Cromatina/química , DNA/química , Histonas/química , Conformação de Ácido Nucleico , Nucleossomos/química
15.
Nature ; 622(7981): 173-179, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731000

RESUMO

Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information1. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression2-4. Pathways involving these post-translational modifications are targets for clinically approved therapeutics to treat human diseases. Lysine methylation and acetylation are generally assumed to be mutually exclusive at the same residue. Here we report cellular lysine residues that are both methylated and acetylated on the same side chain to form Nε-acetyl-Nε-methyllysine (Kacme). We show that Kacme is found on histone H4 (H4Kacme) across a range of species and across mammalian tissues. Kacme is associated with marks of active chromatin, increased transcriptional initiation and is regulated in response to biological signals. H4Kacme can be installed by enzymatic acetylation of monomethyllysine peptides and is resistant to deacetylation by some HDACs in vitro. Kacme can be bound by chromatin proteins that recognize modified lysine residues, as we demonstrate with the crystal structure of acetyllysine-binding protein BRD2 bound to a histone H4Kacme peptide. These results establish Kacme as a cellular post-translational modification with the potential to encode information distinct from methylation and acetylation alone and demonstrate that Kacme has all the hallmarks of a post-translational modification with fundamental importance to chromatin biology.


Assuntos
Acetilação , Cromatina , Lisina , Metilação , Processamento de Proteína Pós-Traducional , Sítio de Iniciação de Transcrição , Animais , Humanos , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Histona Desacetilases/metabolismo
16.
Science ; 381(6653): 92-100, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410825

RESUMO

Nanoscale chromatin organization regulates gene expression. Although chromatin is notably reprogrammed during zygotic genome activation (ZGA), the organization of chromatin regulatory factors during this universal process remains unclear. In this work, we developed chromatin expansion microscopy (ChromExM) to visualize chromatin, transcription, and transcription factors in vivo. ChromExM of embryos during ZGA revealed how the pioneer factor Nanog interacts with nucleosomes and RNA polymerase II (Pol II), providing direct visualization of transcriptional elongation as string-like nanostructures. Blocking elongation led to more Pol II particles clustered around Nanog, with Pol II stalled at promoters and Nanog-bound enhancers. This led to a new model termed "kiss and kick", in which enhancer-promoter contacts are transient and released by transcriptional elongation. Our results demonstrate that ChromExM is broadly applicable to study nanoscale nuclear organization.


Assuntos
Cromatina , Microscopia de Fluorescência , Transcrição Gênica , Zigoto , Cromatina/química , Nucleossomos/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Microscopia de Fluorescência/métodos , Animais , Peixe-Zebra , Embrião não Mamífero , Zigoto/metabolismo , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/metabolismo
17.
Science ; 381(6655): 313-319, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37384673

RESUMO

Loss of H2A-H2B histone dimers is a hallmark of actively transcribed genes, but how the cellular machinery functions in the context of noncanonical nucleosomal particles remains largely elusive. In this work, we report the structural mechanism for adenosine 5'-triphosphate-dependent chromatin remodeling of hexasomes by the INO80 complex. We show how INO80 recognizes noncanonical DNA and histone features of hexasomes that emerge from the loss of H2A-H2B. A large structural rearrangement switches the catalytic core of INO80 into a distinct, spin-rotated mode of remodeling while its nuclear actin module remains tethered to long stretches of unwrapped linker DNA. Direct sensing of an exposed H3-H4 histone interface activates INO80, independently of the H2A-H2B acidic patch. Our findings reveal how the loss of H2A-H2B grants remodelers access to a different, yet unexplored layer of energy-driven chromatin regulation.


Assuntos
Chaetomium , Montagem e Desmontagem da Cromatina , Cromatina , Histonas , Nucleossomos , Cromatina/química , DNA/química , Histonas/química , Nucleossomos/química , Microscopia Crioeletrônica , Chaetomium/química , Chaetomium/ultraestrutura
18.
J Mol Biol ; 435(11): 168019, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330288

RESUMO

All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.


Assuntos
Cromatina , Epigenoma , Mecanotransdução Celular , Mitose , Cromatina/química , Cromatina/genética , Mecanotransdução Celular/genética , Humanos , Neoplasias , Células Estromais
19.
Science ; 380(6649): 1070-1076, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289875

RESUMO

Much progress has been made recently in single-cell chromosome conformation capture technologies. However, a method that allows simultaneous profiling of chromatin architecture and gene expression has not been reported. Here, we developed an assay named "Hi-C and RNA-seq employed simultaneously" (HiRES) and performed it on thousands of single cells from developing mouse embryos. Single-cell three-dimensional genome structures, despite being heavily determined by the cell cycle and developmental stages, gradually diverged in a cell type-specific manner as development progressed. By comparing the pseudotemporal dynamics of chromatin interactions with gene expression, we found a widespread chromatin rewiring that occurred before transcription activation. Our results demonstrate that the establishment of specific chromatin interactions is tightly related to transcriptional control and cell functions during lineage specification.


Assuntos
Cromatina , Desenvolvimento Embrionário , Genoma , RNA-Seq , Análise de Célula Única , Animais , Camundongos , Cromatina/química , Cromatina/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Desenvolvimento Embrionário/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula/genética
20.
J Biol Chem ; 299(7): 104907, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307918

RESUMO

Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.


Assuntos
Cromatina , Metilação de DNA , DNA , Timina DNA Glicosilase , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...